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Insects have evolved a diversity of hearing organs specialized to detect
sounds critical for survival. We report on a unique structure on butterfly
wings that enhances hearing. The Satyrini are a diverse group of butterflies
occurring throughout the world. One of their distinguishing features is a con-
spicuous swelling of their forewing vein, but the functional significance of
this structure is unknown. Here, we show that wing vein inflations function
in hearing. Using the common wood nymph, Cercyonis pegala, as a model, we
show that (i) these butterflies have ears on their forewings that are most sen-
sitive to low frequency sounds (less than 5 kHz); (ii) inflated wing veins are
directly connected to the ears; and (iii) when vein inflations are ablated, sen-
sitivity to low frequency sounds is impaired. We propose that inflated veins
contribute to low frequency hearing by impedance matching.

1. Introduction
Insects have a rich diversity of hearing organs that function in a variety of tasks
including locating mates, evading predators and coordinating social inter-
actions [1]. To achieve these tasks, insects need to evaluate the amplitude,
frequency and temporal patterns of sounds [2]. The small size of insects pre-
sents challenges to achieving these tasks and consequently, insect ears have
evolved unique specializations [3]. Here, we investigate how inflated wing
veins in butterflies function to enhance hearing.

Satyrinae are a large subfamily of approximately 2400 butterfly species
belonging to the family Nymphalidae. Many Satyrinae possess ears at the
base of their forewings [4–6], but little is known about the characteristics of
their hearing. A distinguishing feature of Satyrinae, particularly within the
tribe Satyrini, is a conspicuous ‘inflated’, ‘dilated’ or ‘swollen’ vein on each
forewing [7–9]. However, the function of these prominent structures is
unknown. We propose that they function in hearing based on their morphologi-
cal proximity to the ear and the known function of air cavities in insect ears.
Using a Satyrini, the common wood nymph (Cercyonis pegala), we first describe
the morphology of the eardrum and characterize its vibration properties.
We then test the hypothesis that swollen wing veins function in hearing—
specifically in the tuning and sensitivity of the eardrum’s response to sound.
We predict that (i) there is a physical connection between the ear and the
swollen vein and (ii) ablating the swollen vein will impair hearing.

2. Material and methods
(a) Animals
Cercyonis pegala butterflies were collected from their natural habitat near Ottawa and
Perth, Ontario, Canada between July and August 2016 and 2017 (see electronic sup-
plementary material). Specimens used for laser vibrometry were stored in glassine
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envelopes at approximately 88C for up to 6 days prior to con-
ducting experiments. A total of 30 specimens were used; seven
males and seven females for laser vibrometry and all 30 for mor-
phology, including the same samples used in vibrometry.

(b) Tympanal and wing vein morphology
Tympanal membrane and forewing vein morphology were exam-
ined in 15 males and 15 females. Photographs were taken using a
light microscope (Leica DMC4500) equipped with a camera (Leica
M205C) and tympanal surface area was measured (Leica Appli-
cation Suite 4.8.0). Scanning electron micrographs (SEMs) were
used to image the tympanal membrane and the connectivity
between the tympanal chamber and the subcostal vein.

(c) Laser vibrometry and acoustic stimuli
Vibration measurements were made with a scanning laser Dop-
pler vibrometer (Polytec PSV 400) coupled with an OFV-505
sensor fitted with a close-up unit. Anesthetized butterflies were
mounted on a rotatable metal platform attached to a steel rod.
The forewing and abdomen were immobilized, and wing-scales
removed to expose the tympanum. For each butterfly, the entire
ear membrane was scanned, using approximately 150–200
measurement points on a grid. Vibrations of the tympanic mem-
brane were measured in response to acoustic stimuli: 160 ms
periodic chirps from 0.75 to 20 kHz with a frequency resolution

of 6.25 Hz (see electronic supplementary material). The sound
pressure level (SPL) was measured using a calibrated microphone
(Bruel and Kjær: 4138) coupled to a pre-amplifier (Nexus: 2690).
Acoustic and vibrational data were digitized at a sampling rate
of 51.2 kHz. The magnitude, phase and coherence of each mem-
brane’s displacement were plotted as a frequency response at
each scan point, which was calculated from measurements of the
membrane’s velocity at each point (see electronic supplementary
material). Video animations of the membrane vibration were cre-
ated using PSV software (see electronic supplementary material).

Vibration properties of the tympanal membrane with the
vein intact were measured for each individual. Following the
initial scan, the inflated subcostal vein ipsilateral to the ear was
ablated by making a longitudinal cut to open the ventral surface
(electronic supplementary material, figure S1) and the vibration
pattern of the tympanum was remeasured.

(d) Data analysis
Comparison of tympanal vibration characteristics between sexes
was done using two-sample t-tests with unequal variances. The
magnitude of the membrane transfer function (at point of high-
est displacement) was plotted using Matlab R2017b
(v.9.3.0.713579) and fitted to a damped simple harmonic oscil-
lator (SHO) model. Parameters for an SHO, such as resonance
frequency, were estimated and fitted using Matlab’s Curve Fit-
ting toolbox, and corresponding displacements at resonance
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Figure 1. Ear and wing vein morphology of C. pegala. (a) Butterfly in resting position. A white circle marks the location of the ear. Scale bar: 5 mm. (b) Light
micrograph of right tympanal membrane. Scale bar: 200 mm. (c) Forewing showing enlarged subcostal (Sc) vein, as well as cubital (Cu) and anal (An) veins.
Tympanal ear is seen at the wing base. Scale bar: 1 mm. (d ) Internal structure of Sc vein viewed through the cuticle. Scale bar: 500 mm. (e) Cross-section of
the Sc vein. Scale bar: 500 mm. ( f ) Laser scan of Sc vein and tympanal membrane depicting displacement at 4.8 kHz. Inset: Scanning electron micrograph of
the opening connecting the tympanal chamber and Sc vein. Scale bar of inset: 100 mm.
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frequency were calculated from the fitted models. Mean reson-
ance frequency and mean displacement at resonance frequency
were compared between the intact and ablated conditions
using paired two-sample t-tests.

3. Results
(a) Morphology
Cercyonis pegala has a well-developed tympanal ear located at
the base of the ventral forewing (figure 1a). The membrane is
oval-shaped and is bordered by a chitinous ring (figure 1b,c).
Both males and females have well-developed tympanal mem-
branes, with surface areas of 0.243+0.040 and 0.274+

0.032 mm2, respectively. Surface areas did not differ between
sexes despite differences in body size (electronic supplemen-
tary material, table S2). The subcostal vein is visibly
enlarged (figure 1a,c; electronic supplementary material,
figure S2) and physically connected to the tympanal chamber
(air space beneath the tympanum) (figure 1f ). The enlarged
vein contains an internal network of tissue that forms a
honeycomb-like configuration (figure 1c–e).

(b) Mechanical response of tympanum
The mechanical response of the eardrum in C. pegala was
measured in seven males and seven females with intact
veins (figures 1f and 2, and table 1). There were no significant
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Figure 2. Vibrational response of tympanal membrane in C. pegala. (a) Scanning electron micrograph of tympanal membrane (left) and laser scanning grid (right).
(b) Tympanal displacement per unit SPL in response to 5.7 kHz (male #8, resonant frequency) when inflated vein is intact (top) or ablated (bottom). Each is shown
at 4 phases of the oscillation. Red: outward deflection, green: inward deflection. Note the difference in scale between the two conditions. (c) Displacement (top) and
phase (bottom) of tympanal membrane relative to frequency for intact (green) and ablated (blue) conditions. (N ¼ 14, solid lines: mean).
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differences between sexes (electronic supplementary material,
table S1 and figure S3). The tympanum is most responsive to
low frequency sounds (less than 5 kHz) and behaves like a
low-pass filter. The response is flat below 5 kHz and
decreases between 5 and 8 kHz, before falling steeply
beyond 8 kHz (figure 2c). Mean maximum displacement
is 182+102 nm Pa21 and frequency at maximum displace-
ment is 4.39+3.01 kHz (figure 2b and table 1). The phase
change is very gradual around the resonance frequency
(7.8+ 1.2 kHz), which is itself higher than the frequency of
maximal displacement. Taken together, this indicates that
the ear is a highly damped and non-resonant system, which
is adapted to respond equally to a broad range of low
frequency sounds.

When the subcostal vein is ablated, the membrane shows
reduced sensitivity overall (electronic supplementary
material, movie S1), but particularly to sounds at the
lower end of this frequency range (0.75–5 kHz) (figure 2
and table 1). The response amplitude is no longer flat, is
erratic for frequencies from 0.5 to 1.5 kHz and then steadily
increases, exhibiting a maximum at 5.99 kHz. The mean
maximum displacement and the mean displacement of the
membrane at resonance frequency were both significantly
lower in the ablated condition (figure 2 and table 1),
although the mean resonance frequency of the membrane
in the ablated condition remained unchanged (table 1).
The spatial pattern of response amplitude also remains simi-
lar. These results show that ablating the inflated vein does
not change the mechanical properties of the membrane,
yet results in reduced sensitivity to lower frequency
sounds. Our data clearly show that the inflated vein is con-
nected to and functionally active in the C. pegala auditory
system. The data also suggest that the vein inflation is cru-
cial to developing the flat frequency response observed in
the ears.

4. Discussion
Tympanal ears were first described in Satyrini butterflies
more than 100 years ago [4], but until now, the tuning charac-
teristics of these ears had not been studied. Our results from a
diurnal Satyrini species, C. pegala, show that the tympanal
membrane is broadly tuned to low frequency sounds (less
than 7 kHz). Sensitivity to low frequency sounds concurs
with one behavioural study of Satyrini species Erebia euryale
and E. manto (125 Hz–16 kHz) [10], and neurophysiological
studies of non-Satyrini species, Caligo eurilochus (1–4 kHz)
andMorpho peleides (1–5 kHz) [11–13]. The functional signifi-
cance of hearing in butterflies is not fully understood, but
evidence to date indicates that they detect sounds of diurnal

predators, including bird flight and calls that overlap with
hearing sensitivity of butterflies [10,13,14].

While our results clearly support the hypothesis that
inflated veins function to enhance hearing by increasing sen-
sitivity to low frequency sounds, a number of details remain
to be resolved. The ear may function either as a pressure or a
pressure difference receiver, as sound may only reach the
tympanal membrane by an external path, or may have a yet
undiscovered path. Inflated veins may contribute to hearing
by acoustic impedance matching, whereby the volume of
air trapped within the inflated ear would allow the ear to
respond to low frequencies that would otherwise cancel out
from an absence of a gradient [15]. The honeycomb-like struc-
tures within the inflated vein may also contribute to
enhancing hearing, perhaps functioning in damping the
membrane response like honeycomb sandwich panels in
buildings to provide noise transmission loss [16]. Our results
show that inflated veins provide butterflies with a unique
mechanism of auditory frequency tuning, with unusually
‘flat’ frequency responses that may have implications for
novel acoustic technology.

This study resolves a century-old conundrum concerning
the function of inflated wing veins in butterflies. We show
that they function in hearing. Small insects face physical chal-
lenges in hearing low frequencies [3,15,17]. Thus, vein
inflations may occur in other smaller species of butterflies.
Alternatively, vein inflations may evolve in species that
benefit from enhanced low frequency hearing, perhaps
owing to habitat or predator differences. Hearing in butter-
flies is widespread, but at present little is known about the
function and evolution of these sensory organs. Further
experimental and comparative studies are essential to better
understand the acoustic sensory ecology of these ecologically
important insects.
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Table 1. Tympanal membrane responses in intact and ablated condition.

parameter intact (n 5 14)a ablated (n5 14)a p-valueb

mean resonance frequency (kHz) (+s.d.) 7.78+ 1.21 8.08+ 1.55 t ¼ 21.3450, d.f. ¼ 13, p ¼ 0.1008

mean displacement at resonance frequency (nm Pa21) (+s.d.) 156+ 50.1 98.1+ 48.0 t ¼ 3.5980, d.f. ¼ 13, p ¼ 0.0016

mean maximum displacement (nm Pa21) (+s.d.) 204+ 99.3 122+ 53.6 t ¼ 4.5040, d.f. ¼ 13, p ¼ 0.0006

mean frequency at maximum displacement (kHz) (+s.d.) 4.39+ 3.01 7.64+ 3.36 t ¼ 22.5801, d.f. ¼ 13, p ¼ 0.0228
aN ¼ 7 males, 7 females.
bSignificant difference between intact and ablated conditions, determined using paired Student’s t-test for unequal variances ( p, 0.01 taken as significant).
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