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Synopsis Insects have a diversity of hearing organs known to function in a variety of contexts, including reproduction,

locating food, and defense. While the role of hearing in predator avoidance has been extensively researched over the past

several decades, this research has focused on the detection of one type of predator-echolocating bats. Here we reassess

the role of hearing in antipredator defense by considering how insects use their ears to detect and avoid the wide range

of predators that consume them. To identify the types of sounds that could be relevant to insect prey, we first review the

topic of hearing-mediated predator avoidance in vertebrates. Sounds used by vertebrate prey to assess predation risk

include incidental sound cues (e.g., flight sounds, rustling vegetation, and splashing) produced by an approaching

predator or another escaping prey, as well as communication signals produced by a predator (e.g., echolocation calls,

songs) or nonpredator (e.g., alarm calls). We then review what is known, and what is not known, about such sounds

made by the main predators and parasitoids of insects (i.e., birds, bats, terrestrial vertebrates, and invertebrates) and how

insects respond to them. Three key insights emerged from our review. First, there is a lack of information on how both

vertebrate and insect prey use passive sound cues produced by predators to avoid being captured. Second, while there are

numerous examples of vertebrate prey eavesdropping on the calls and songs of predators and nonpredators to assess risk,

there are currently no such examples for eared insect prey. Third, the hearing sensitivity of many insects, including those

with ears considered to be dedicated to detecting bats or mates, overlaps with both sound cues and signals generated by

nonbat predators. Sounds of particular relevance to insect prey include the flight sounds and calls of insectivorous birds,

the flight sounds of insect predators and parasitoids, and rustling vegetation sounds of birds and terrestrial predators.

We conclude that research on the role of insect hearing in predator avoidance has been disproportionally focused on bat-

detection, and that acoustically-mediated responses to other predators may have been overlooked because the responses

of prey may be subtle (e.g., ceasing activity, increasing vigilance). We recommend that researchers expand their testing of

hearing-mediated risk assessment in insects by considering the wide range of sounds generated by predators, and the

varied responses exhibited by prey to these sounds.

Introduction

Hearing is well developed in many insects. Ears have

evolved multiple times and are morphologically and

physiologically diverse (Yager 1999; Greenfield 2002;

Yack 2004; Hedwig 2014; Strauß and Stumpner

2015; Pollack et al. 2016). This diversity reflects a

wide range of functions, which can be divided into

five non-mutually exclusive categories: (1)

Reproduction (e.g., locating mates, species

recognition, courtship, competition, and pair main-

tenance); (2) Aggression (e.g., territoriality, competi-

tion for resources); (3) Host location (e.g., parasitoid

flies locating hosts); (4) Social interactions (e.g.,

group formation and organization); and (5)

Predator detection (e.g., bat detection). With respect

to predator detection, the vast majority of studies

focus on the detection of echolocating bats (reviewed

in Hoy 1992; Miller and Surlykke 2001; Conner and
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Corcoran 2012; Yager 2012; Pollack 2015, 2016).

While there is no question that echolocating bats

have imposed significant selection pressures on the

evolution of hearing in night flying insects, bats are

not the only predators of insects, and night flying

insects are not the only insects with ears.

Conceivably, insects also use their hearing to detect

their many non-bat predators and enemies, includ-

ing birds, terrestrial vertebrates, and invertebrate

predators and parasitoids.

The main objective of this article is to consider

how insects use their hearing to assess predation risk,

with a focus on predators other than echolocating

bats. The incentive for this line of investigation

was prompted by the following: First, while there

are few examples of insects using their hearing to

detect nonbat predators, this is not the case for ver-

tebrates. In fact, vertebrate prey rely heavily on a

diversity of sounds to assess risk. In addition to

detecting the echolocation calls of hunting bats and

aquatic mammals, they eavesdrop on calls and songs

of predators, attend to alarm calls of both conspe-

cifics and heterospecifics, and respond to incidental

sound cues generated by predator movements. If ver-

tebrate prey use these sounds to assess risk, then it is

reasonable to assume that insects do also. Second,

there is a growing number of examples of insects

that have ears, or ear tuning, with no identified

function. These examples include hearing in diur-

nally active, noncalling insects such as butterflies

(e.g., Lane et al. 2008; Lucas et al. 2009; Sun et al.

2018), noncalling grasshoppers (e.g., Riede 1987;

Lehmann et al. 2010; Lehmann 2012), praying man-

tids with low frequency tuning (e.g., Yager 1996),

and insects with hearing sensitivity that is mis-

matched to the species’ calling songs (e.g., Mason

1991; Yack et al. 2000). In these cases, hearing

must function for purposes other than bat-

detection and conspecific communication, and has

been proposed to function in detecting nonbat pred-

ators. Third, even those insects with ears deemed to

be dedicated “bat detectors,” which includes the ears

of most moths, may have broadband tuning extend-

ing to sound frequencies that are lower than ultra-

sonic bat echolocation calls (i.e., >20 kHz), or have

retained hearing once released from the selection

pressures of echolocating bats (e.g., Surlykke 1986;

Fullard 1994; Surlykke et al. 1998; Muma and

Fullard 2004; Jacobs et al. 2008). Again, these results

have led scientists to propose that hearing may func-

tion to detect predators other than bats. Similarly,

other insects such as crickets, katydids, and cicadas,

often presumed to have ears that are “dedicated” to

reproductive behaviors, may also use their hearing to

detect predators. It is reasonable to assume that, like

for most vertebrates, insect ears function in more

than one context. There are examples of insects us-

ing their hearing for dual purposes (see Pollack

2016). Based on these arguments, and the sugges-

tions by several scientists that insect ears may func-

tion in nonbat predator avoidance (e.g., Mason 1991;

Ribari�c and Gogala 1996; Yack et al. 2000; Jacobs

et al. 2008; Lehmann 2012; Fournier et al. 2013;

Strauß and Stumpner 2015; Mikhail et al. 2018),

we decided that it was time to reassess the role of

insect hearing in predator detection.

We have three primary goals. First, we consider

how vertebrate prey use their hearing in predator

avoidance. By identifying the different types of

sounds that vertebrate prey attend to, and how

they respond to these sounds, we “set the stage”

for posing and testing hypotheses on hearing-

mediated predator avoidance in insects. Second, we

will consider the question, “What does an insect

hear?” by discussing the different types of hearing

organs in insects, the breadth of their hearing capa-

bilities, and the known functions (or lack thereof) of

hearing in different species. Third, we consider the

main enemies of insects, including bats, birds, terres-

trial vertebrates, and invertebrates. We assess what

sounds these enemies generate, and review evidence

supporting the hypothesis that insect prey can hear

or respond to these sounds. We also consider

whether insects listen to nonpredator sounds such

as conspecific or heterospecific alarm calls to assess

predation risk. Note that we have restricted our fo-

cus to “hearing” airborne sounds, and do not review

the many interesting examples of prey (both verte-

brate and invertebrate) using solid-borne vibrations

in the context of predator avoidance (for reviews see

Hill 2008; Warkentin 2011; Virant-Doberlet et al.

2019). We emphasize that this is not intended to

be a comprehensive review of all examples of

hearing-mediated risk assessment in either vertebrate

or insect prey. The main objectives are to identify

gaps in our knowledge of hearing-mediated predator

detection and avoidance in insects, and to develop

hypotheses for future research.

Vertebrate prey: How do they use
hearing to avoid predators?

Many vertebrates that are vulnerable to predation

use their hearing to avoid predators (see examples

in Table 1). In fact, the detection of both predators

and prey are considered to be the most fundamental

functions of hearing in vertebrates (Fay and Popper

2000). Sounds of importance to prey can be

2 J. E. Yack et al.
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generated by the predator (e.g., echolocation calls,

communication songs, and calls), or by another indi-

vidual or group (e.g., conspecific or heterospecific

alarm calls). Sounds from these sources can be cate-

gorized as (passive) cues or (active) signals. By cues,

we are referring to sounds that have not evolved to

alter the behavior of a recipient, including incidental

sounds generated as a consequence of movement

(e.g., flying, walking, and digging). Signals, in con-

trast, have evolved in the context of conveying a mes-

sage to an intended receiver (Maynard-Smith and

Harper 2003), which could be oneself (e.g., echoloca-

tion) or another recipient (e.g., alarm or mating call).

Prey respond to sounds that alert them to predators

in a number of different ways. We identified seven

non-mutually exclusive behavioral responses: (1)

Ceasing activity (e.g., stop calling or moving, tonic

immobility); (2) Increased vigilance (e.g., scanning,

smelling, and inspecting); (3) Avoidance (e.g., seeking

shelter, moving away); (4) Evasive response (e.g., sud-

den turns, dives); (5) Antipredator display or attack

(mobbing, display of weaponry); (6) Alarm calls (e.g.,

warning others of danger); (7) Increased sensitization

to other stimuli that indicate a threat. The types of

sounds used by vertebrate prey, and their behavioral

responses, are illustrated in Fig. 1. Table 1 provides a

list of selected examples that highlight the variety of

sounds used by prey representing different taxa, and

their respective behavioral responses.

Sounds made by predators

Sound cues used, or allegedly used, by vertebrate

prey to detect predators include those generated

directly by a predator’s movements (e.g., aerody-

namic or mechanical sounds produced by wing

movements) or indirectly by a predator’s movements

(e.g., crackling branches, rustling leaves, and splash-

ing). Such incidental sound cues tend to be broad-

band with significant ultrasonic components, and

with dominant frequencies typically <20 kHz (e.g.,

sounds associated with flight (Bernal et al. 2007;

Fournier et al. 2013; Clark et al. 2020) and moving

through vegetation (Fullard 1988; Bernal et al. 2007;

Goerlitz et al. 2008; Jacobs et al. 2008; Haff and

Magrath 2010)). These sound frequencies overlap

with the hearing of many vertebrate prey. Most

birds, amphibians, and reptiles have best hearing

sensitivities >10 kHz, most fish are sensitive between

40 Hz and 1 kHz, and mammals are sensitive to sonic

(<20 kHz) and ultrasonic (>20 kHz) frequencies

(reviewed in Fay and Popper 2000; Köppl et al.

2014; Clark et al. 2020). While it is often assumed

that vertebrate prey use their hearing to detect inci-

dental sounds of approaching predators, there is sur-

prisingly little empirical evidence for this (see

Table 1). Nestlings of the white-browed scrubwren

(Sericornis frontalis) stopped calling following play-

backs of a predator walking on leaf litter (Haff and

Magrath 2010), and male t�ungara frogs (Physalaemus

pustulosus) decreased their calling rate when exposed

to sounds of the beating wings of frog-eating bats

(Trachops cirrhouis) (Bernal et al. 2007). Eastern

chipmunks (Tamias striatus) spent more time being

alert when the sounds of rustling leaf litter were

played in conjunction with alarm calls (Weary and

Kramer 1995). While there has been much research

Fig. 1 An overview of different types of sounds that prey use to avoid predation, and how they respond to these sounds.
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on the acoustically “cryptic” flight of owls and other

predatory birds (see Clark et al. 2020), there are in

fact few examples showing that vertebrate prey detect

flight sounds of predatory birds. One study provided

indirect evidence for this. Ilany and Eilam (2008)

monitored behavioral reactions of common spiny

mice (Acomys cahirinus) during an attack by a tawny

owl (Strix aluco). The mice responded to attacks by

fleeing either immediately after the owl was noticed

or by freezing and fleeing when the owl was in closer

proximity. The authors stated that it was unclear

what aspect(s) of the owl attack—visual, acoustic,

or both—the mice responded to. However, sound

detection was assumed to be involved because the

owl was reportedly in flight when noticed by the

mice. Sound cues that aquatic prey such as fish

could use to detect predators include water splash-

ing, tail slaps, and breaching (e.g., Finneran et al.

2000; Van Opzeeland et al. 2005). There is also a

lack of information on how vertebrates use their

hearing to detect harmful flying insects such as bit-

ing flies and mosquitoes that have potential to carry

harmful diseases or cause considerable blood loss.

There is evidence that vertebrates react to flying

insects. For example, ungulates have been shown to

repel flies by muscle twitching, ear twitching, head-

tossing, leg stomping, and biting, and small rodents

have been observed to repel mosquitos by shaking

their head, flipping their ears, shifting their feet, and

rubbing their face (Edman et al. 1974; Hart and Hart

2018). Elephants were observed to repel flies by us-

ing branches to swat them away from more inacces-

sible areas of their body (Hart and Hart 1994).

Despite the evidence that vertebrates detect and re-

spond to flying insect enemies, the sensory cues used

by vertebrates to detect flying insects are not men-

tioned in these studies. Flying insects, including sev-

eral species of Diptera and Hymenoptera, produce

low frequency sounds with fundamental frequencies

<1 kHz and harmonics reaching 5 kHz (e.g.,

Offenhauser and Khan 1949; Sotavalta 1963;

Raman et al. 2007; Rashed et al. 2009; Potamitis

and Rigakis 2016); therefore, these sounds are poten-

tially important cues for vertebrates. How vertebrate

prey use incidental sound cues to assess risk is clearly

a topic of interest for further research.

There are numerous examples of vertebrate prey

responding to acoustic communication signals pro-

duced by predators (Table 1). These sounds include

calls and songs that predators use to communicate

with conspecifics for different functions (e.g., attrac-

tion, courtship, warning, and cohesion). Because

these sounds have evolved as communication signals,

they tend to be more specialized, and in many cases,

prey have evolved specialized hearing capabilities to

detect and distinguish between different sound char-

acteristics. A wide range of vertebrate prey, including

mammals, birds, fish, amphibians, and reptiles, at-

tend to predator communication signals (Table 1)

and they typically respond by freezing, moving

away, or releasing an alarm call (reviewed by

Hettena et al. 2014). For example, Zenaida doves

(Zenaida aurita) reduced foraging and produced

alarm signals when exposed to red-tailed hawk

(Buteo jamaicensis) vocalizations (Barrera et al.

2011). Silver perch respond to playbacks of bottle-

nose dolphin (Tursiops truncatus) whistles by ceasing

or lowering the volume of their chorusing activity

(Luczkovich et al. 2000). Being able to recognize

and react to these sounds is considered to be highly

adaptive, as continued chorusing may attract

unwanted attention from predatory dolphins.

Anoles lizards detect and respond to calls of preda-

tory birds. Huang et al. (2011) found that female

crested anoles (Anolis cristaellus) decreased their dis-

play rates and freeze when exposed to kestrel (Falco

sparverius) calls. Cantwell and Forrest (2013) tested

the responses of brown anoles (Anolis sagrei) to

predatory bird calls and found similar results. The

auditory systems of anoles are well developed, which

is interesting because they are nonvocal animals.

Their hearing sensitivity (1–7 kHz) (Brittan-Powell

et al. 2010) overlaps with the calling frequency of

most birds (Dooling et al. 2000). It is likely that a

key role of hearing in anoles is to detect avian pred-

ators, as anoles constitute a large portion of the diet

of predatory birds. Howler monkeys (Alouatta pal-

liata) responded to hunting calls of the predatory

harpy eagle (Harpia harpyja) (Gil-da-Costa et al.

2003). Upon hearing the eagle calls, female monkeys

gathered their offspring and moved into more

densely covered parts of the forest, while males pro-

duced alarm calls. Some prey can even discriminate

between calls of different predators and respond ap-

propriately. Fichtel and Kappeler (2002) presented

the vocalization sounds of three different predators

to two different prey, redfronted lemurs (Eulemur

fulvus rufus) and white sifakas (Propithecus verreauxi

verreauxi). The predator vocalizations were those of

two terrestrial predators, a fossa (Cryptoprocta ferox)

and stray dog (Canis familiaris), and one aerial pred-

ator, the harrier hawk (Polyboroides radiatus). Both

the redfronted lemurs and white sifakas responded to

vocalizations of the terrestrial predators by looking

down at the ground and producing vocalizations of

their own. Both prey species also showed very similar

reactions when responding to vocalizations of the

aerial predator, including looking up and scanning
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the sky as well as moving lower in the tree canopy

(Fichtel and Kappeler 2002).

Echolocation is a signal that predators use to com-

municate with themselves, by sending a sound pulse

and receiving the echo to assess the location and

characteristics of their prey. The primary echolocat-

ing predators are odontocete cetaceans (e.g., killer

whales, dolphins, and porpoises), and bats. While

many vertebrate prey, including frogs, birds, fish,

and seals are hunted by echolocating predators, there

are few examples of these prey responding to echo-

location calls (Table 1). Most examples of vertebrate

prey responding to echolocating predators are fish

responding to odontocete cetaceans. For example,

American shad (Alosa sapidissima) are preyed upon

by bottlenose dolphins (Tursiops truncatus) and har-

bor seals (Phocoena phocoena), both of which use

sonar clicks to forage (Plachta and Popper 2003).

American shad have hearing sensitivity between

200 Hz and 180 kHz (Mann et al. 1998), which over-

laps with the echolocation clicks of harbor porpoises

(120–140 kHz) and bottlenose dolphins (70–

130 kHz) (Plachta and Popper 2003). Three types

of prey responses were reported, depending on the

loudness and sound frequencies of the echolocation

calls. Harbor seals (Phoca vitulina) are preyed upon

by killer whales (Orcinus orca). The seals respond to

the echolocation calls of killer whales by moving far-

ther away from the surface of the water to lessen

their chances of being detected (Deecke et al.

2002). Not only were the seals able to recognize

and respond to killer whale echolocation calls, but

they could also discriminate between different pop-

ulations of killer whales. The seals did not respond

to the calls of local killer whales known to only eat

fish, thus not being a threat to the seals, but did

respond to the calls of killer whales known to prey

on mammals (Deecke et al. 2002).

Sounds made by nonpredators

Vertebrate prey also attend to sounds of nonpreda-

tors to assess predation risk. Such sounds can also be

categorized as cues or signals (Table 1). Cues made

by nonpredators include the incidental sounds pro-

duced by another animal escaping a predator. For

example, crested pigeons (Ocyphaps lophotes) pro-

duce a whistling sound when taking off in an

alarmed state. Playbacks of these “alarmed” take off

whistles elicited alarm responses in conspecifics

(Hingee and Magrath 2009). The authors state that

these wing sounds could either be a cue, if the

sounds provided information about danger but did

not evolve in that context, or an alarm signal, if the

sounds evolved to convey information to others. In

another study, Coleman (2008) played acoustic

“startle wing whistles” of mourning doves (Zenaida

macroura) to other potential flock-mates, including

other mourning doves, northern cardinals

(Cardinalis cardinalis), and house sparrows (Passer

domesticus). All species responded to startle wing

whistles with increased vigilance and startling behav-

ior. The authors state that it cannot be concluded

whether these sounds of escaping prey constitute

cues or signals.

Many vertebrate prey respond to acoustic alarm

signals. Alarm sounds detected by a focal prey could

be directed at the focal prey, such as in the case of

an alarm call produced by conspecifics, or they could

be directed at another individual, such as when the

focal prey eavesdrops on the alarm calls of another

species. Responses by vertebrate prey to alarm calls

typically include hiding, freezing, or coordinating a

defensive response (Table 1 and Fig. 1). Examples of

prey responding to alarm calls that are directed at

the focal prey include the following. Eastern chip-

munks (T. striatus) responded to conspecific alarm

calls by either fleeing or stopping and assuming an

alert position (Weary and Kramer 1995). Male diana

monkeys (Cercopithecus diana diana) elicit alarm

calls in response to predators whose hunting style

relies on the element of surprise, such as leopards

and crowned hawk eagles (Zuberbühler et al. 1997).

Females and juveniles showed a variety of responses

to playbacks of these alarm calls, including lowering

themselves in the canopy and inspecting the location

of the sound source. Willow tits (Parus montanus)

produce high-frequency alarm calls when they detect

a predator (Rajala et al. 2003). In response to an

alarm call that was produced in the presence of a

stuffed pigmy owl, tits froze, and moved toward

safety. Prey may also eavesdrop on alarm calls

intended for another recipient (see Carrasco and

Blumstein 2012; Magrath et al. 2015). For example,

mule deer (Odocoileus hemionus) respond to yellow-

bellied marmot (Marmota flaviventris) alarm calls by

looking around, orienting their body toward the

sound with ears faced forward, and erecting their

neck (Carrasco and Blumstein 2012). African savan-

nah herbivores responded to heterospecific alarm

calls, particularly if they shared similar predators

with the caller (Meise et al. 2018). The Gal�apagos

marine iguana (Amblyrhynchus cristatus) eavesdrops

on the alarm call of the Gal�apagos mockingbird

(Nesomimus parvulus) in response to a shared pred-

ator, the Gal�apagos hawk (Buteo galapagoensis)

(Vitousek et al. 2007). The iguana’s response to play-

backs of the mockingbird alarm calls was to increase
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vigilance. In some cases, prey have been shown to

discriminate between different alarm calls of hetero-

specifics. For example, red-breasted nuthatches (Sitta

canadensis) could discriminate between three distinct

alarm calls of black-capped chickadees (Poecile atri-

capillus) that were indicative of different predators

(Templeton and Greene 2007). In a study by

Rainey et al. (2004), yellow-casqued hornbills

(Ceratogymna elata) were shown to distinguish be-

tween the alarm calls produced by another prey spe-

cies, diana monkeys (C. diana). Diana monkeys

produce distinct alarm calls for each of two preda-

tors, the crowned eagle (Stephanoaetus coronatus)

and the leopard (Panthera pardus). Of these two

predators, only the eagle is a threat to the yellow-

casqued hornbill. When diana monkey eagle alarm

calls were played, the yellow-casqued hornbills

responded by moving closer to the playback site in

attempt to spot the predator. This same response

was observed following playbacks of the diana mon-

key leopard alarm call, but significantly less so.

In summary, our review of hearing-mediated

predator avoidance in vertebrate prey shows that

prey attend to a variety of sounds to assess risk of

attack. Behavioral responses by prey are also varied,

ranging from freezing to coordinating group attacks

against the predator. The vast majority of studies

report on prey eavesdropping on the communication

songs and calls of their predators. There are also

numerous examples of prey attending to alarm calls

produced by conspecifics or heterospecifics. Less re-

search has focused on prey attending to sound cues

(e.g., flight sounds, leaves rustling, branches break-

ing, and splashing) that predators produce when

hunting, or that other prey produce when escaping.

Likewise, there are few examples of prey detecting

and responding to echolocation sounds of odonto-

cete cetaceans. The types of sounds relevant to prey,

and the prey’s responses, are summarized in Fig. 1.

We will now use this information to consider if and

how insects detect and respond to such sounds.

Insect prey: How do they use hearing to
avoid predators?

Many insects have ears, but our understanding of how

they use hearing to avoid predators other than echo-

locating bats, is not well documented. In the previous

section, we identified a variety of sound cues and

signals that vertebrate prey use to avoid predation

(Fig. 1 and Table 1). We will now explore how insects

might use hearing for predator detection in similar

ways. First, we provide a brief overview of the hearing

capabilities of insects. Second, we review the main

enemies of insects, including predators and parasi-

toids, the sounds that they produce, and how insect

prey might respond to these sounds. We also discuss

whether insects attend to sounds of nonpredators.

What does an insect hear?

Insects have two types of hearing organs, often re-

ferred to as “near-field” and “far-field” receptors,

that respond to the particle displacement and pressure

components of air-borne vibrations, respectively

(Ewing 1989; Yack 2004; Windmill and Jackson

2016). Near-field sound receptors in insects are

light-weight structures that are displaced by the

movement of air molecules. Examples include long

hair-like structures called trichoid sensilla in caterpil-

lars (Fig. 2A) (e.g., Tautz and Markl 1978; Taylor and

Yack 2019) and the plumous antennae of mosquitoes

(e.g., Göpfert et al. 1999; Menda et al. 2019). Near-

field receptors typically are sensitive to low frequency

sounds (<1 kHz) arising from sound sources close to

the receiver, although there is recent evidence that

such types of sensors can detect higher sound fre-

quencies at farther distances (e.g., Zhou and Miles

2017; Menda et al. 2019). Near-field sound receptors

are not well studied, but are thought to be wide-

spread, and could play an important role in detecting

aerial insect predators or parasitoids. Far-field sound

receptors detect the pressure component of sound,

which can travel long distances from a sound source.

Insects detect pressure waves with tympanal ears

(Fig. 2B and C) that comprise a tympanal membrane

associated with an air sac that allows the membrane

to vibrate in response to sound pressure (Yager 1999,

2004; Greenfield 2002; Windmill and Jackson 2016).

Tympanal ears vary widely in their morphological and

physiological characteristics, and many are capable of

detecting and discriminating a broad range of sound

frequencies, amplitudes, and temporal patterns. In

contrast to near-field sound receptors, a great deal

is known about tympanal ears, including their neuro-

physiological responses to different sound character-

istics, and the behaviors associated with hearing (see

Yager 1999, 2004; Greenfield 2002; Hedwig 2014;

Pollack et al. 2016). The functions of tympanal hear-

ing have focused primarily on behaviors associated

with reproduction and bat detection in adults. Here

we consider how hearing in insects may function to

detect not only bats, but also other predators.

Bat predators: Sounds made and insect
responses

Bats are a major predator of both flying and non-

flying insects (Neuweiler 1989; Vaughan 1997;
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Bayefsky-Anand 2005; Jones and Rydell 2005; Lacki

et al. 2007). Many bats feed on nocturnally flying

insects and hunt using ultrasonic echolocation calls

(Norberg and Rayner 1987; Schnitzler and Kalko

2001). Other bats consume insects by gleaning

from the foliage, whereby they flutter above the in-

sect prey, and may or may not use echolocation calls

(Bell 1982; Swift and Racey 2002; Geipel et al. 2013).

As such, in addition to detecting bat echolocation

calls (see below), eared insects could potentially de-

tect bats by passive sound cues generated by their

flight, or their echolocation calls. There are few

examples of sounds produced by bat flight (Gould

1988; Bernal et al. 2007; Boonman et al. 2014). These

sounds are low frequency and broadband with dom-

inant frequencies <20 kHz. These frequencies overlap

with the hearing of many insects (see Fig. 2), but

there are no examples to the best of our knowledge

that insects detect bats by their incidental flight cues.

We recommend further investigations into the flight

sounds made by insectivorous bats while they are

hunting insects.

Fig. 2 Hearing organs in insects, showing different receptor types (near-field and far-field) and their respective sensitivity ranges. (A)

Monarch butterfly caterpillar (Danaus plexippus) showing the location (arrows) of trichoid sensilla (a near field sound receptor) on the

prothorax. (B) A single trichoid sensillum. Scale bar: 100 mm. (C) Behavioral tuning curve showing the best sensitivity to sounds

<500 Hz. (D) Morpho butterfly (M. peleides) showing the location (arrow) of a tympanal ear (far field sound receptor) at the base of

the forewing. (E) Close up of the tympanal membrane. Scale bar: 350 mm. (F) Tuning curve of the auditory nerve showing broad tuning

with best sensitivity to frequencies between 1 and 8 kHz. (G) Noctuidae moth (Trichoplusia ni) showing the location (arrow) of a

tympanal ear on the metathorax. (H) Close up of the tympanal ear. Scale bar: 300mm. (I) Tuning curve of the auditory nerve showing

broad tuning with best sensitivity to frequencies >18 kHz. All photos and audiograms are from the Yack lab.
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The role of insect ears in detecting bat echoloca-

tion calls has been extensively researched and the

topic has been reviewed by many, including

Spangler (1988a), Hoy (1989, 1992), Fullard (1998),

Miller and Surlykke (2001), Waters (2003), Conner

and Corcoran (2012), Yager (2012), Pollack (2015,

2016), and Ter Hofstede and Ratcliffe (2016). In

some insects, hearing is thought to function exclu-

sively to detect bat echolocation calls. These insects

include nocturnally flying Lepidoptera (moths and

nocturnal butterflies), lacewings, mantids, and beetles

(Greenfield 2016; Pollack 2016). In other insects, ears

have been proposed or demonstrated to function as

bat detectors but also serve other functions associ-

ated with mating or host location (Greenfield 2016;

Pollack 2016). Three general behavioral responses to

bat echolocation calls have been described for eared

insects (see examples in Table 2). First, flying insects

exhibit evasive flight responses including negative

phonotaxis, dropping to the ground, or erratic

maneuvers (sometimes called acoustic startle

responses). Ultrasound-evoked evasive maneuvers

have been demonstrated in Lepidoptera (e.g.,

Roeder 1967; Yack et al. 2007), Coleoptera (e.g.,

Forrest et al. 1995; Spangler 1988b), Orthoptera

(e.g., Schulze and Schul 2001; Dawson et al. 2004),

Mantodea (Triblehorn et al. 2008; Yager 2012) and

Neuroptera (e.g., Miller and Olesen 1979; Holderied

et al. 2018). Second, insects that are not flying may

cease their activities or remain motionless in the

presence of bat calls. For example, moths reduced

their mate seeking behavior in the presence of echo-

location calls (Acharya and McNeil 1998; Svensson

et al. 2003; Skals et al. 2005), and katydids and

moths paused their calling in response to ultrasound

(Spangler 1984; Faure and Hoy 2000; Greenfield and

Baker 2003). Third, some insects respond to ultra-

sound by producing defense sounds. These insects

include tiger moths (Corcoran et al. 2010), hawk-

moths (Barber and Kawahara 2013), and tiger beetles

(Yager and Spangler 1997). Ultrasound-evoked

sound production may have different specific anti-

predator functions, including aposematism or warn-

ing, mimicry, startle, and jamming bat sonar

(Corcoran et al. 2009; Conner 2014). Responses of

insects to bat echolocation sounds are not necessarily

simplistic or predictable (Pollack 2015). Insects may

respond differentially to sound features that indicate

different degrees of threat (e.g., close or distant pred-

ator), they may need to distinguish between the

sounds of a predator and a mate, or make decisions

on how to respond to a predator’s sound when there

are conflicting demands, such as following a phero-

mone or singing to a mate.

While bat echolocation has undoubtedly imposed

significant selection pressures on the evolution and

tuning of ears in nocturnally flying insects, it is ar-

guable that all insects with ultrasonic sensitivity do

not necessarily use their hearing exclusively for bat

detection. First, many insect ears considered to func-

tion as dedicated “bat detectors” are broadly tuned

with sensitivity spanning both sonic and ultrasonic

frequencies [e.g., moths (Ter Hofstede et al. 2013);

mantids (Yager 1996); beetles (Yager and Spangler

1997); lacewings (Miller 1971)]. Such ears may also

be capable of detecting incidental sounds of foraging

birds and terrestrial vertebrates that produce broad-

band sounds associated with flight and rustling veg-

etation (e.g., Jacobs et al. 2008; Fournier et al. 2013)

(see also discussion below under bird predators)

(Figs. 2 and 3). Second, some insects with ultrasound

sensitive ears retain their hearing, or have shifted

their hearing to lower sound frequencies once re-

leased from the selection pressure of bats (e.g.,

Fullard 1994; Fullard et al. 1997; Surlykke et al.

1998; Muma and Fullard 2004). Third, the assump-

tion that moth hearing evolved in response to echo-

locating bats has come under scrutiny. A recent

study suggests that hearing organs in Lepidoptera

appeared multiple times and millions of years prior

to the evolution of bat echolocation (Kawahara et al.

2019). These results led the authors to question the

hypothesis that moth ears evolved in direct response

to echolocating bats, and to propose that hearing in

many moths and butterflies may have evolved to

detect other predators, such as the walking or wing-

beat sounds of other predators such as birds. We

recommend that hearing in insects with ultrasound

sensitivity be further tested by assessing behavioral

responses to broadband sounds such as those pro-

duced by other predators (see below). Moreover,

these tests should assess not only escape responses,

but also immobility and vigilance (see Fig. 1).

Bird predators: Sounds made and insect
responses

Many insects are consumed by insectivorous birds

(Chai 1986; Pinheiro 1996; Gibbs 1998; Yard et al.

2004; Orłowski and Karg 2013; Nyffeler et al. 2018),

but do birds produce sounds that are detectable by

insect prey? Sounds produced by avian predators

that could be of importance to insect prey include

incidental cues produced by foraging, or, communi-

cation signals and calls. We look at these sounds and

discuss evidence for insects detecting and/or

responding to these sounds.
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Do birds produce incidental sound cues while for-

aging on insects? The enormous diversity of bird

species, the habitats they live in, and the insect

prey available results in a wide variety of insect cap-

turing methods (see Remsen and Robinson 1990).

Foraging strategies of different species feeding on

invertebrates include, but are not limited to, pulling

prey from the soil, picking from plants or under

bark, and various flight capture methods such as

aerial hawking, sallying, and aerial gleaning. While

all of these foraging tactics likely produce incidental

sound cues, there are very few studies that have

recorded the sounds generated by foraging insectiv-

orous birds. Fournier et al. (2013) recorded flight

sounds from eastern phoebes (Sayornis phoebe) while

attacking tethered insects, and from chickadees (P.

atricapillus) when gleaning insects (Fig. 3A).

Foraging birds produced broadband sounds with

dominant frequencies <20 kHz but with significant

energy extending into the ultrasound (>20 kHz).

Flight sounds of a bird approaching an insect had

distinct repetitive elements (18–20 Hz) that corre-

sponded to the upward and downward strokes of

wings during flight. These sounds increased in loud-

ness and frequency bandwidth as they approached

the insect. Similar sound characteristics were

recorded from other flying birds, although in these

cases the birds were not actively foraging on insects

(e.g., Mahony 2006; Hall 2014; Clark et al. 2020).

Foraging birds also produce sounds by landing on

or moving through plant substrates (Jacobs et al.

2008). The sounds of breaking twigs, rustling leaf

litter, and crackling underbrush (through various

grasses) are broadband sounds with dominant fre-

quencies <20 kHz, but again, with significant energy

in the ultrasound (Fullard 1988).

Can insects hear the sound cues generated by for-

aging birds? The hearing of many insects that are

consumed by birds, including butterflies, grasshop-

pers, cicadas, moths, and mantids, overlaps with the

above-mentioned broadband sound cues generated

by foraging birds. These insects include many diur-

nally active, noncalling insects such as butterflies and

grasshoppers that have hearing broadly tuned to

sounds <20 kHz but with most sensitivity <5 kHz

(see Strauß and Stumpner 2015). The adaptive func-

tion of these ears remains unknown, but they have

been proposed to function in detecting foraging

birds. Yet, there have been few experiments testing

this hypothesis. Neurophysiological recordings from

the auditory nerves of moths and butterflies show

that these insects are capable of not only detecting

bird flight sounds, but their sensory cells can encode

the temporal and amplitude changes associated with

the wing beat sounds of an approaching bird

(Fournier et al. 2013; Hall 2014; Mikhail et al.

2018). These authors propose that an insect such

as a butterfly can detect a flying bird at �2.5 m

and possibly further. There is also evidence that

the rustling sounds of birds landing on bushes are

detectable by moth prey (Jacobs et al. 2008).

Playbacks of the rustling noises of a foraging bird

(Pycnonotus capensis) excited auditory cells in a noc-

tuid moth (Helicoverpa armigera). When these rus-

tling sounds were simulated in the field, moths

responded by flying away. In another study by

Dawson et al. (2004), flying locusts (Locusta migra-

toria) responded to both sonic and ultrasonic sounds

equally, by negative phonotaxis; although these

sounds did not simulate the incidental sounds of

foraging birds, the frequencies used to overlap with

such sounds. Wild caught wood-nymph butterflies

(Satyrinae) responded to sound playbacks of bird

flight and snapping twigs by taking flight, and

Morpho butterflies responded to these sounds after

being sensitized by tactile stimuli (Yack lab, unpub-

lished data). Future studies should focus on record-

ing sounds generated by predatory birds foraging on

insects, and by conducting playback experiments to

assess if and how insects respond behaviorally to

these sounds, by flying away or ceasing activity.

Also, there is the possibility that foraging birds use

counter strategies to render themselves acoustically

cryptic to insect prey, either by using sound-

reducing feather modifications or flight maneuvers-

an intriguing hypothesis worthy of further

consideration.

Can insects hear the communication songs and

calls of insectivorous birds, and if so, do they use

these sounds to assess risk? In the previous section of

this review, we saw that it is common for vertebrate

prey to eavesdrop on the communication calls and

songs of predators. We also discussed examples of

insects that are not in flight assessing the risk of bat

predation by eavesdropping on their echolocation

calls. The typical responses of prey to these sounds

are to remain still, increase vigilance, and cease ac-

tivity. Given these observations, it is surprising that

there has been little to no testing of the hypothesis

that insect prey use their hearing to eavesdrop on the

communication signals of insectivorous birds, al-

though this hypothesis has been proposed (e.g.,

Ribari�c and Gogala 1996; Mikhail et al. 2018). The

frequency range of calls and songs of most insectiv-

orous birds is between 1 and 10 kHz (e.g., Samuel

1971; Dooling et al. 2000; Martin et al. 2011), which

overlaps with the hearing of many eared insects that

are consumed by birds, including diurnal butterflies,
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Fig. 3 Sound cues and signals that are of potential significance to insect prey in assessing risk of predation. (A–C) Incidental cues

produced by predators, including (A) flight sounds of an insectivorous bird, the eastern phoebe (S. phoebe), attacking a tethered moth;

(B) flight sounds of a predatory wasp (Polistes sp.); (C) rustling sounds of leaves indicating a foraging terrestrial predator. (D–F).

Predator communication signals, including (D) the echolocation call of an aerial insectivorous bat, the big brown bat (Eptesicus fuscus);

(E) a territorial call of an insectivorous bird, the rufous-tailed Jacamar (G. ruficauda); (E) an alarm (distress) call of an insectivorous bird,

the barn swallow (Hirundo rustica). Sounds of the eastern phoebe, the predatory wasp, and rustling leaves were recorded by J.E.Y., the

bat call was provided by J. Ratcliffe, and the jacamar and barn swallow calls were obtained from Xeno-Canto (Files: XC522878 and

XC511681).
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crickets, grasshoppers, cicadas, and moths (Yack

2004; Yack and Dawson 2008). Neurophysiological

recordings from the auditory nerves of the blue mor-

pho butterfly (Morpho peleides) showed that the ears

are very sensitive to the territorial calls of one of its

predators, the jacamar (Galbula ruficauda) (Mikhail

et al. 2018) (Fig. 3E). It is possible that insects use

calling songs of predators to assess risk, and that

they respond to these sounds by remaining station-

ary, increasing alertness, or flying in the opposite

direction of the sound source.

Terrestrial predators: Sounds made and
insect responses

There are also many terrestrial predators of insects.

These include mammals (shrews, rodents), reptiles

(snakes, lizards), amphibians (frogs, toads), and

other invertebrates (spiders, mantids, beetles)

(Buckner 1966; Schoenly 1990; Churchfield and

Rychlik 2006; Manicom and Schwarzkopt 2011).

When moving through vegetation, animals generate

incidental sound cues including the snapping of

twigs, and the rustling of leaves and grasses (e.g.,

Goerlitz et al. 2008; Haff and Magrath 2010; Page

and Bernal 2020). However, to the best of our

knowledge, the incidental sounds of terrestrial pred-

ators have not been recorded in the context of pur-

suing insect prey. Also, as discussed above in the

context of bird predators, there are no examples of

insect prey attending to the calls and songs of ter-

restrial predators to the best of our knowledge. We

recommend that the incidental sound cues and com-

munication signals of terrestrial predators of insect

prey be recorded and played back to assess their

responses.

Flying insect predators and parasitoids:
Sounds made and insect responses

Many insects are attacked by flying insect predators

or parasitoids (e.g., flies, wasps, and dragonflies)

(Greathead 1963; Steiner 1981; Alonso-Mejia and

Marquez 1994; Hedwig and Robert 2014). Aerial in-

sect enemies produce flight sounds as they approach

a prey. As noted in the previous section of this re-

view, flying insects generate sounds with frequencies

extending up to 5 kHz (e.g., Offenhauser and Khan

1949; Sotavalta 1963; Raman et al. 2007; Rashed

et al. 2009; Potamitis and Rigakis 2016). These

sounds overlap with the hearing sensitivity of insects

that possess both near-field and far-field hearing

organs (Figs. 2 and 3). There are several examples

of insect prey detecting and responding to the

sounds of aerial insect enemies (Table 2). Several

species of caterpillars, including those of monarch

butterflies and cabbage moths, respond to simulated

sounds of flying insects by flicking or dropping from

a plant (e.g., Myers and Smith 1978; Tautz and

Markl 1978; Taylor and Yack 2019). There is increas-

ing awareness that near-field sound reception is

widespread in insects, but in most cases, the function

and mechanisms of this form of hearing have not

been well documented. These near-field receptors

are likely an important mechanism for risk assess-

ment in insect prey attacked by aerial invertebrate

enemies and the topic warrants further investigation.

Sounds made by nonpredators

In the first part of this review, we saw that vertebrate

prey commonly attend to sounds of nonpredators,

and in particular, the alarm calls of both conspecifics

and heterospecifics. To the best of our knowledge,

there are no examples of insect prey listening to the

passive or active sounds of nonpredators. All exam-

ples of acoustically-mediated alarm signals in insects

are those communicated by solid-borne vibrations

(see Virant-Doberlet et al. 2019).

Conclusions

The main goal of this study was to assess how insects

use their hearing to detect and avoid predators.

While many insects have ears, little is known about

how hearing is used to assess the risk of attack by

nonbat predators. To identify the kinds of sounds

that insect prey might use, we reviewed the literature

on hearing-mediated predator avoidance in verte-

brates. We identified a variety of sound sources

that vertebrate prey use to assess risk, including in-

cidental sound cues and communication signals gen-

erated by predators and nonpredators. We then

reviewed the literature to assess whether predators

of insects produce similar types of sounds, and if

insects pay attention to these sounds. Some impor-

tant insights emerged from our review. First, there is

a lack of research on the passive sound cues gener-

ated by predators of both vertebrates and insects,

and correspondingly, how prey use these sounds in

risk assessment. Such sounds include those produced

as byproducts of flying, splashing, or moving

through vegetation. Considering that predators reg-

ularly use incidental sound cues to detect prey, it is

highly probable that, on the flip side, prey use inci-

dental sound cues to detect predators. Second, there

are numerous examples of vertebrate prey eavesdrop-

ping on the calls and songs of their predators to

assess predation risk, yet there are very few examples

of insect prey listening for such sounds, aside from
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bat echolocation calls. Likewise, there are many

examples of vertebrate prey attending to alarm calls

of conspecifics or heterospecifics, but there are no

reported examples of insects using such sounds.

Third, many eared insects are capable of detecting

the sounds generated by nonbat predators. For ex-

ample, diurnally active butterflies and many grass-

hoppers have ears that are broadly tuned to sounds

<20 kHz. These insects do not produce sounds for

communication and do not fly at night, yet have well

developed hearing. So we propose that these insects,

like nonsound producing vertebrate prey (e.g., rab-

bits and some lizards), use their ears primarily to

detect nonbat predators. Also, while many insect

ears are considered to be “dedicated” for a specific

purpose, such as mate recognition or bat detection,

they may also function to detect nonbat predators.

Many insect ears are complex organs with multiple

sensory cells and capable of discriminating temporal,

frequency, and amplitude characteristics of sounds,

and their capabilities for functioning in more than

one context may be underestimated. We recommend

that further research be conducted to test the hy-

pothesis that insects use their ears to assess risk of

attack by predators other than aerial hunting, echo-

locating bats. This research should include record-

ings of ecologically relevant sounds produced by

predators, nonpredators, and parasitoids, and play-

back studies that assess neurophysiological and be-

havioral responses to these sounds. When assessing

behavioral responses to sound, it is important to

consider that insects may respond by not responding

at all, or by becoming sensitized to other threatening

stimuli, and assessments of hearing-mediated risk as-

sessment in insects should not focus exclusively on

classic escape behaviors. While this article focused on

hearing-mediated risk assessment, it is important to

note that prey may require input from other sensory

modalities (e.g., vision and tactile) in combination

with hearing to initiate a defensive response, and

such multimodal stimuli should also be incorporated

into future studies.
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2005. Her odours make him deaf: crossmodal modulation

of olfaction and hearing in a male moth. J Exp Biol

208:595–601.

Spangler HG. 1984. Silence as a defense against predatory bats

in two species of calling insects. Southwest Nat 29:481–8.

Spangler HG. 1988a. Moth hearing, defense, and communi-

cation. Annu Rev Entomol 33:59–81.

Spangler HG. 1988b. Hearing in tiger beetles (Cicindelidae).

Physiol Entomol 13:447–52.

Insect hearing and predator avoidance 21

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article/doi/10.1093/icb/icaa097/5876835 by O

U
P R

estricted Live U
niversity Test, Johnny M

cAdm
in on 14 O

ctober 2020



Sotavalta O. 1963. The flight sounds of insects. In: Busnell

RG, editor. Insect sounds. New York (NY): Elsevier. p.

374–89.

Strauß J, Stumpner A. 2015. Selective forces on origin, adap-

tation and reduction of tympanal ears in insects. J Comp

Physiol A 201:155–69.

Steiner AL. 1981. Anti-predator strategies. II. Grasshoppers

(Orthoptera, Acrididae) attacked by Prionyx parkeri and

some Tachysphex wasps (Hymenoptera, Sphecinae and

Larrinae): a descriptive study. Psyche A J Entomol 88:1–24.

Sun P, Mhatre N, Mason AC, Yack JE. 2018. In that vein:

inflated wing veins contribute to butterfly hearing. Biol Lett

14:20180496.
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